New MIDAD Design

Brett Viren

bv@nl . gov

Brookhaven National Lab

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.1/2.

1. Strategy of new MIDAD framework.

2. MVC implementation

3. Gui wrappers
(a) libsigc++ signal/slots
(b) libsigc++ memory management

4. Scenes, Scenery, SceneElements
(a) How to.

Displays

Ranges

NamedFactory and NamedProxy
Still to do

MIDAD Demo

© © N o O

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.2/2.

i m—

Strategy of new MIDAD Framework

® Continue to follow Model-View-Control (MVC) pattern.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.3/2.

Strategy of new MIDAD Framework

—r—— R e W] L e e e e e

® Continue to follow Model-View-Control (MVC) pattern.

® Use ROOT for graphics and GUI, but otherwise keep it at bay.

Only use where necessary, wrap and sanitize where possible.
Minimize the need to run r oot ci nt .

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.3/2:

Strategy of new MIDAD Framework

—r—— R e W] L e e e e e

® Continue to follow Model-View-Control (MVC) pattern.

® Use ROOT for graphics and GUI, but otherwise keep it at bay.

Only use where necessary, wrap and sanitize where possible.
Minimize the need to run r oot ci nt .

® Rely on libsigc++ for signal/slots and memory management.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.3/2:

Strategy of new MIDAD Framework

—r—— R e W] L e e e e e

® Continue to follow Model-View-Control (MVC) pattern.

® Use ROOT for graphics and GUI, but otherwise keep it at bay.
Only use where necessary, wrap and sanitize where possible.
Minimize the need to run r oot ci nt .

® Rely on libsigc++ for signal/slots and memory management.

® Most classes are in namespace M dad. Exception for Gui
related, including Range (separate lib one day?) and
JobControl interface (JOBCMODULE CPP macro didn’t like
namespaces).

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.3/2:

Model-View-Control (MVC)

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.4/2.

Encapsulates a type of data (eg. a CandHandl| e) plus meta
data.

Exports an API to modify that data.
Provides nodi f i ed signal.

cl ass CandMbdel <CandHandl eType>
base class manages handle, calls bool Updat e() when new

MomNavigator is set, if t r ue returned, emits modified().
One concrete example:

class DigitListMdel
publ i ¢ CandMbdel <CandDi gi t Li st Handl e>

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.5/2.

Implements a representation of a Model.

Vi ew base class is templated on Model type.
Attaches to Models nodi f i ed signal.

Callsvirtual Configure(Mdel Type& when Model is
modified.

Manages Model (via Si gC. : Ptr).
Concrete View implements Conf i gur e to reconfigure itself.

Concrete View typically subclass some other graphical class

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.6/2.

Control

Modifies a Model.

Cont r ol base class is templated on Model type.

Manages Model (via Si gC: : Ptr)

o
»
»
»

Concrete class is typically owned by some other (possibly
graphical) class.

A class implementing a View can still have Controls.

Should trigger gl obal _updat e signal at the end of the
modification of the Model (allows compound commands, This
needs work).

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.7/2.

Gui and libsigc++

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.8/2.

Gul wrappers

The Gui * classes wrap ROOT’s TG* classes in order to:

® Clean up and simplify the TG interface
® Provide libsigc++ signals

® Provide child widget memory management (via Si gC: : Pt r)
Features:

® Gtkmm design style loosely followed

® Children are passed by reference to parents, lets Widgets to
be created on stack or heap

® TGLayoutHints are mostly unneeded or simplified

#

Menu creation is much simpler

® Sliders, etc, use Ranges

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.9/2.

libsigc++ signal/slots

Any useful Rt signals from the TGinterface are exported as libsigc++
signals. Rt signals continue to work, but not used by MIDAD.

® |n the Rt method, Signal must be a TQODbject, slot must be a
ROCQTiIfied object:

t gobj . Connect ("ItsSig()", "Sonmed ass", & oot obj , " AMet hod() ") ;

® \ith sigc++, any object can hold a signal object and the slot
can be either a SigC::Object or a generic object:

any obj.its_sig.connect (sl ot(an_obj, &Sonmed ass: : AMet hod)) ;
any obj.its_sig.connect (sl ot _class(an_obj, &SoneC ass: : AMet hod)) ;

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.10/2:

Benifits of libsigc++

Use the magic of bi nd:

Si gC. : Si gnal O<voi d> Sone(oject::its_signal;

void C ass:: Method(int);

any obj.its_sig.connect(bind(slot(*ptr, & ass: : Met hod) , 42)) ;
Slots are first class objects:

Si gC. : Sl ot O<voi d> nake_sl ot (voi d);

any obj.its_sig.connect (mke slot());

Chain slots together:

void set(int i) { g sonething =1, }

int get() { return g _sonethi ngel se; }

Si gC. : Si gnal O<voi d> si g;

sig.connect (SigC. :chain(SigC :slot(set), SigC :slot(get)));

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.11/2:

Benifits of libsigc++ cont.

Save the connection:

Connection con = obj->its_signal.connect (sl ot(sone_func));
obj->its_signal.emt(); // sonme_func() is called

con. bl ock(true);

obj->its _signal.emt(); // sonme_func() is not called

con. bl ock(fl ase);

obj->its_signal.emt(); // some_func() is called

con. di sconnect () ;

obj->its _signal.emt(); // sonme _func() is not called

Chain signals:

Si gnal O<voi d> si gl, sig2;

si gl. connect (sl ot (sone_func));
si g2.connect(sigl.slot());

sig2.emt(); // some _func() is called via sig2
/1l triggering sigl's emttance

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.12/2:

libsigc++ memory management

Templated reference counted smart pointer (Si gC. : Pt r <>) used
Internally to libsigc++, but exported. When Pt r is deleted, so shall
object if it was managed and no other Pt r s reference it:

{

Si gC. : Pt r<Sone(hj ect > obj ;
{
Si gC. . Ptr<SoneQhj ect > obj 1 = manage(new SoneCbj ect());
Si gC. : Ptr<Sone(bj ect > obj 2 = manage(new SonmeQbj ect ());
Sone(bj ect* obj 3 = manage(new SoneCbj ect());
obj = obj2
/1l objl, obj2 lives
}
/[l objl is deleted, obj2 lives on, obj3 is |eaked
Sone(bj ect obj 4;
obj = &obj4; [/ ok. objl is now del eted.
obj = manage(new SoneCbject()); // ok. obj4 is not del eted

}

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.13/2:

Scene A TPad which knows about and manages Scenery. Contains
a Scene type. Calls TPad: : Modi fi ed in response to
Scenery’s modified signal. Calls TPad: : Updat e in response to
gl obal updat e.

Scenery Intended as the TPad/ROOT side of a graphical View. It is a
TObject which draws into a Scene, possibly via other TObjects
or SceneElements. Most concrete Scenery will also subclass
some View. Emitts modified signal.

SceneElements Additional API for objects going into a Scene. Allows
for, eg. pointer interaction. Most graphical “primitive” objects
will inherit from this as well as some complex graphical
TObject, eg TBox.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.14/2:

Scenery HOWTO

1.
2.

Inherit Scenery and (probably) some Vi ew<Mbdel Type>
In . cxx file:

static M dad:: SceneryProxy<M dad: : Your Concr et eScener y>
gsYour Concr et eScener yProxy(" Scenery: : Your Concrete") ;

Implement Conf i gur e(Model Type& nynodel)

this->CearPrimtives();

/] Query Scene:

Pl aneVi ew. : Pl aneView t pv = this->Get Scene()->Cet Vi ewlype();
/1 Add TObject or TCbj ect + SceneEl enent

t hi s->AddPrimtives(new TBox(0.2,0.2,0.8,0.8));
this->AddPrimtives(new MyConcr et eSceneEl enent (nynodel)) ;

/]

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.15/2:

o —

Displays

® The Display base provides a widget with a menu, button and
status bar as well as a central widget in which subclasses place
things.

® Subclasses are aggregations of Scenes, Gui widgets or Gui
Views.

® Currently one Display implemented: SceneDisplay holding a
single Scene and a couple of GuiSliders.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.16/2:

@ @

Simple templated encapsulations of a min and max value.

Follows MVC pattern (sort of).
Emits nodi f i ed signal when min/max change.

Template gives type of min/max value. RangeDouble typedef
most used.

Usually shared via Si gC. : Ptr

Used by Scenes for X-Y zooming (eventually color scale),
Scenery for bounds, Gui Sl i der , Models for state data.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.17/2:

NamedFactory and NamedProxy

» NamedFactory is a singleton map of strings to NamedProxy’s.

® Concreate NamedProxy’s register themselves at link time.

® Proxies are looked up at run time to list (menu) and create
subsystem objects.

® Concrete proxies have a ConcreteProxyBase class and a
templated ConcreateProxy

® Concrete proxies can hold lists of all instantiated objects and
emit signals when more objects are created or more proxies
are linked in.

® Currently Displays and Scenery use proxies.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.18/2:

To do - near term

® Currently Concrete Proxies use a Create() method, want to
move to a more general SigC::Slot based scheme.

® Implement more scenery (DigitList and TrackList so far, but
lacking some features).

® Work out configuration scheme - all interactive now, friendly but
tedious.

» Export enough MIDAD APl and do it all in a ROOT .C?
» Use DBI/Registry mechanism?
» Some custom config language? XML?

® Implement any missing functionality in the first MIDAD

® Work through the remaining “to do”s from the first MIDAD.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.19/2:

To do - far term

® \Work out how to “connect” different data, (eg. Click on a hit, all
other hits in track/shower light up

® MC objects, wait for Hugh.

® Job path MVC, Job module config interface.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.20/2:

MIDAD Demo

Cross your fingers.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 — p.21/2:

	Talk Outline
	Strategy of new MIDAD Framework
	Model-View-Control (MVC)
	Model
	View
	Control
	Gui and libsigc++
	Gui wrappers
	libsigc++ signal/slots
	Benifits of libsigc++
	Benifits of libsigc++ cont.
	libsigc++ memory management
	Scenes, Scenery, SceneElements
	Scenery HOWTO
	Displays
	Ranges
	NamedFactory and NamedProxy
	To do - near term
	To do - far term
	MIDAD Demo

